TO: The Honorable Judge
Michael Patrick King,
P.J.A.D, retired and
Special Master

Report On Behalf of The Defendants:
JANE H. CHUN, DARIA L.

DE CICCO, JAMES R. HAUSLER,
ANGEL MIRALDA, JEFFREY R.
WOOD, ANTHONY ANZANO, MEHMET
DEMIRELLI, RAJ DESIA,

JEFFREY LOCASTRO, PETER
LIEBERWIRTH, JEFFREY LING,
HUSSAIN NAWAZ, FREDERICK
OGBUTOR, PETER PIASECKI,

LARA SLATER, CHRISTOPHER
SALKOWITZ, ELINA TIRADO,

DAVID WALKER, DAVID WHITMAN
and JAIRO J. YATACO

Base One Technologies

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Prepared By:
John J. Wisniewski
Base One Technologies
10 S. Division Street
New Rochelle, NY 10805

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

TABLE OF CONTENTS

SECTION PAGE
Section | — Overview of Key Findings 3
Section Il — Our Assumptions 7
Section Il — Analysis Process 9
Section IV — Results / Findings 12
Section V — Summary / Conclusions 28
APPENDICES

Appendix A — Standards and The Software Life-Cycle 32
Appendix B — Lint Program Analysis 37
Appendix C — Lint Errors By Module (King Only) 44

Appendix D — Glossary of Technical Computer and Source Codeelated
Terms 45
Appendix E — John Wisniewski, Curriculum Vitae 47
John Wisniewski, Resume 52
Appendix F — Base One Technologies, Company Capabilities & 56
Credentials

Base One Technologies 2

Docket No. 58,879
Report: Alcotest 7110 Mk 111 C

SECTION | OVERVIEW OF KEY FINDINGS

Key Findings- Testing the Alcotest 7110 1. Alcotest Software Would Not Pass U.S.

MK 11l Source Code uncovered 24 major Industry Standards for Software Development

defects. For the purposes of this overvie LRSI

. Proof of Incomplete Software Testing

we have identified 9 defects with the

. . . Catastrophic Error Detection Is Disabled
greatest impact on the instrument test

. . Implemented Design Lacks Positive Feedback
results, and the validity of those tests.

. Diagnostics Adjust or Substitute Data
Readings

RSV RIS ER{J QU O AN 6 Flow Measurements Adjust and Substitute
along with detailed explanations are foundya =7(eI@pI=1(=loiile) g Hele[e

in Section 1V of this Report. Conclusions |RSEEETiWETENBIoI=EN N (o] M A V| 1TV 2T (o] =To1 M Y/ [o]s [F] (515

are in Section V. or Data

. Timing Problems

Of The 24 Major Defects Uncovered In The 7110Mk llI
1. Alcotest Software Would Not Pass U.S.Source Code, These 9 Defects Greatly Impact The Validity
Of This Instruments Test Results

Industry Standards for Software

Development and Testingt is clear that the Alcotest software would nosgpdevelopment

standards and testing for the U.S. Government, theNlligary, the Federal Aviation
Administration or the Federal Drug Administration, asles commercial standards used in
devices for public safety. Hergandards require the source code be available for audit by
the approving agencies. Industry Standards exist and areeeqehien work is performed
for government agencies. The quality, accuracy and refiabilwork done to industry
standards is consistently superior to products developeduwgtendards.

2. Proof of Incomplete Software TestirgThe claim that the Alcotest software has bededes

thoroughly over some amount of time ignores known commgeience principles. The only
rigid standard of testing software is to ensure tHatoale has been executed or all software
paths have been examined. Following that path of softisdreitless, because it is easily
demonstrated that it it possibldo test everything. The Alcotest software contawer

Base One Technologies 3

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C
45,000 lines of code (computer instructions), of which 3200 lihesdae are designed to
make decisions. Each decision can change the softwacaten path, and each decision
affects subsequent decisions. This situation is not unigine talcotest software, as even
software programs developed under industry standards wdlitbsbe able to test all the
decision pathsHowever, the lack of use of industry coding standards preventsstivgtef
critical paths in the Alcotest software, and prevents removal oftdedering the

requirements, design, and coding process.

3. Catastrophic Error Detection Is Disabled’he code has disabled capabilities in the

processor that detect catastrophic problems when instngcire executed with regard to
invalid and/or illegal data values or with corrupted indiauns. Turning off these safeguards
means as these conditions are encountered, the machine produces unpredistdtsle re

4. Implemented Design Lacks Positive Feedba®ihen the processor changes the state of a

device, such as a motor or valve, the motor or valvefailo respond because of a
malfunction or other cause. The Alcotest does nog leacuitry, sensors, and verification
software components to verify the controlled devi€ais means that the software assumes
the change in state is always correct, but it cannot verify theracAnalogy: when a pilot
lowers the landing gear on a commercial plane, thesyson the plane sense and confirm
that the landing gear lowered. Without this confirmatiue pilot could crash the plane,
because of the assumption that the gear lowered artinbdi

5. Diagnostics Adjust/Substitute Data Readind$e diagnostic routines for the Analog to

Digital (A/D) Converters are performed during the datasussment cycles of the Alcotest
(breath measurement, purge, etc.), and the diagnaséigeerformed on the measurement/
data values taken. Diagnostic routines in other amsibftware applications are executed
during a separate period from the measurement peribdsdiagnostic fails, the Alcotest
will substitute arbitrary “canned” data values for the measured devloereby affecting the

breath measurements.

Base One Technologies 4

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

6. Flow Measurements Adjusted/Substitutethe software presumes at the beginning of the

measurement that no airflow is going through the machiine software then takes an
airflow reading, and whatever number is read, this va@ssumed to be the “zero value” or
baseline. No quality check or reasonableness test ésalothis baseline measurement. (Is
100 good? 500?) Subsequent calculations are compared agaibstsiine measurement,
and the difference is considered the change in airfidwy. if the baseline value is 500, and
the next reading is 400, then the airflow measuremeritds, or the air is flowing in reverse.
The software logic also detects data measurementdsjland if these occur, then the
software substitutes the last known good baseline value,ifeveccurred a long time ago.
When this calibrated value is either corrupted or is initially computedrrectly,
measurements made by the machine prior to the new power down/powquepcse are

defective.

7. Error Detection Logiec The software design detects measurement errorgrimres/

suppresses these error messages unless they occurraulautogs of consecutive timegor
example, if an error has to occur 32 times before reporting, themrthveould occur 31
times, then appear within range once, then appear 31 times, etc., and lieEha

properly working device.

8. Software Does Not Insulate/Protect Modules or DaEanbedded processors do not possess

the ability to prevent inadvertent change to data looatio memory or to instructions. The
Alcotest software relies heavily on “global” data a#tes and global functions or
subroutinesyhich means any incorrectly coded or modified functions can inadvertently
modify a data value not part of that routine’s sphere of influence.

9. Timing Problems The design of the code is to run in timed units of 8.19segonds, by

means of an interrupt signal to a handler, which gignals the main program control that it
can continue to the next segment. The interrupt giies/ery8.192 ms, not 8.192 ms from

the latest request for a time deldis means the analysis of the mainline code dependent on
the interrupt timer operation will reveal that the actual timingd walry widely, and be

inconsistent.

Base One Technologies 5

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Analogy: You have an “alarm clock” that has an hourdhaninute hand, and second hand,
and the hands move in a stepping motion from one amadher. This clock chimes every
minute on the minute (when the second hand reaches 18 \fgnt this clock to time a
minute and tell you when the minute happens, and the seaoddsat 5 seconds when you
submit the request, then the alarm will go off 55 secaatés, Iwhich is close enough. If
instead, you request the minute timing and the second han85ssaconds, then your

“minute timer” in that instance would be only 5 secondg.lon

Common-sense practice is to write interrupt handlénsoé as small units of code that
operate quickly, and for a short period of tinlhe Alcotest external interrupt routines are
very lengthy and are written in C instead of assembly language, whiahardase the
execution time and the memory used. There is a possibility thateheipt handler can
operate on an interrupt, take too long and miss the next one, which could prodoicect
and unexpected results.

Base One Technologies 6

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

SECTION II OUR ASSUMPTIONS

1. We assumed that the binary image given actually repexséimt code in the Alcotest

machine.

2. We did not assume the code supplied produced the binary imadeduppd we set out to
verify that the code produced the image. If the imagewesaified, then we could enumerate
which supplied modules contributed to the image, and which le®aere superfluous. We
assumed that superfluous code was part of optional featupast of new work in progress;

this is common in software development.

3. We assumed that schematics, datasheets, and manualdeauldplied with the source
code, as well as scripts, compiling instructions, “males’f compilers, and other software

tools.

4. We assumed we would find problems in areas of the code cortorembedded systems.
These include timing problems, problems in handling interrupgsie execution of
instructions, memory management problems, array and vectoessing, device control

problems, and memory banking (shared memory) management.

5. We assumed there could be inconsistencies in data h@ndth respect to unit conversions,

argument passing between functions, and data acquisition.

Base One Technologies 7

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

6. We assumed comments placed in the source code, espdwakypointing out issues and
problems, to be worthy of investigation. We treated suaneents with skepticism until the

comments were proven reasonably correct or relevant.

Additional Assumptions by Base One

7. We assumed the source code transmitted from Drageromgseate and the version of
source code to be verified as that represented in Nibre3dl1 firmware.

8. We assumed the compilers and tools transmitted to Jasmied/ski were correct. These
instructions proved to be defective. However, based oyehis of experience with similar
tools John was able to surmount the problem.

9. We assumed the translation tools would provide an adeqaagdation from German to
English. For critical interpretations, we used a Gerspeaking translator to accurately

translate comments for analysis and comparison tedhece code.

Base One Technologies 8

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

SECTION llI ANALYSIS PROCESS AND TOOLS

The initial approach used to analyze the Alcotest 7110 Miolirce code was to look for
identifying information indicating which software coding dieyenent standards Drager used in
the development of the software. Typically, progransmesert comments into the code such as

"coded in this manner to satisfy 1ISO 90b&% such indicators.

It is important to emphasize that these standardsodréngpection methods" or "checklists” to
reverse-engineer code. The standards are developmntwtbah improve software design and

coding by encouraging standardized coding and design.

We conformed to the following steps in analyzing the sococde provided by Drager.

1. Compiled and linked the source coderovided.

2. When built, compared the binary file produced against thgerfie® provided.

3. Used the makefifeto identify source filessupplied that were not used in the bjilahd

therefore could be ignored.

1180 9000 is a family of standards for quality management systems. 1ISO 9000 is maintained by 1SO, the International
Organization for Standardization and is administered by accreditation and certification bodies.

2 Compiler, a computer program (or set of programs) that translates source code written in a computer language into another
computer language (the target language)

3 Linker, a program that takes one or more objects generated by compilers and assembles them into a single executable
program

4 Any sequence of statements and/or declarations written in some human-readable computer programming language
5 Image file formats provide a standardized method of organizing and storing image data

6 In software development, make is a utility for automatically building large applications. Files specifying instructions for make are
called Makefiles. Make is an expert system which tracks which files have changed since the last time the project was built and
invokes the compiler on only those source code files and their dependencies.

A place from which data is taken. Many computer commands involve moving data. The place from which the data is moved is
called the source, whereas the place it is moved to is called the destination or target.

8 oo
To program, or write lines of code.

Base One Technologies 9

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

4. Found and started with the "main"” function.
5. Next, identified function calls to establish the aajlired down to the lowest level.
6. Uncovered the interrupt handl&tsind determined how they were used.
7. Used the following tools
a. "Understand” (a C analysis program) to verify the callneg and identify functions
b. LINT™ to identify syntaX’ and coding® problems.
c. Reviewed the output of the linker to look at the code arctite"*,
d. Software language translators to translate the Gernshfos variable names and
annotating comments.
8. Continual, recursive code review.
9. Investigated source code comments.
10.Investigated and tried to verify areas in the code wheyblems typically occur, particularly

since industry accepted coding standards were not used.

9 In computer science, a tree is a widely-used data structure that emulates a tree structure with a set of linked nodes.

10 A signal informing a program that an event has occurred. When a program receives an interrupt signal, it takes a specified
action (which can be to ignore the signal). Interrupt signals can cause a program to suspend itself temporarily to service the
interrupt. Each type of software interrupt is associated with an interrupt handler -- a routine that takes control when the interrupt
occurs.

1 |n computer programming, lint was the original name given to a particular tool that flagged suspicious and non-portable
constructs (i.e., likely to be bugs) in C language source code. The term is now applied generically to tools that flag suspicious
usage in software written in any computer language.

12 Refers to the spelling and grammar of a programming language. Computers are inflexible machines that understand what you
type only if you type it in the exact form that the computer expects. The expected form is called the syntax.

'3 Written computer instructions. Code can appear in a variety of forms. The code that a programmer writes is called source
code. After it has been compiled, it is called object code. Code that is ready to run is called executable code or machine code

1% The architecture of a system always defines its broad outlines, and may define precise mechanisms as well.

Base One Technologies 10

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Tools Used

1. Lint — code checker from UNIX/Linux*%open source

2. Microsoft Visual C++ Development Environment and Coepil
3. Borland C++ 4.52

4. 1AR embedded C compiler

5. “Understand” C code analyzer

6. Source Format X

7. Easy Translator

8. GE Trans translator

9. Alta Vista Babelfish

10.Beyond Compare v. 2.1.2

> A multi-user, multitasking operating system widely used as the master control program in computer workstations and servers.
UNIX is written in C.

16 A version of UNIX. Linux is freeware.

1 Generically, open source refers to a program in which the source code is available to the general public for use and/or
modification from its original design free of charge, i.e., open.

Base One Technologies 11

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

SECTION IV FINDINGS / RESULTS

Alcotest 7110 Mk Il Source Code Results

Characteristics of Alcotest Software

The program presented shows ample evidence of incongasign, incomplete verification of
design, and incomplete “white box” and “black box” tegtifherefore the software has to be
considered unreliable and untested, and in several cakessihot meet stated requirements.
The source code supplied has creation dates and modificiaies from 1993 to 1997, but the
coding architecture, style, organization, and modificatiooumentation (audit trail) more
closely resemble the software principles used in the 1@/01s1980’s. The planning and
documentation of the design is haphazard. Sections ofidieal code and modified code show
evidence of using an experimental approach to coding, or wsebest described as the “trial
and error” method. Several sections are marked aptieary, for now”. Other sections were
added to existing modules or inserted in a code streanmdetada patchwork design and coding

style.

The commonly used software verification principle {tegtfor this coding/development era is
to execute all software logic paths and verify the opevatutput is correct for each path.
Unfortunately, complex software in the Alcotest, @glsin this manner cannot be fully tested, by
mathematical proof. Testing of complex systems caresbtall logic paths. As the number of
logic paths increases, the number of tests requiredttaltehe combinations of the paths rises
exponentially. Therefore, the time required to tespaths is not practical to achieve. The

premise that the software is reliable is thereforebased on evidence, data, experimental tests

Base One Technologies 12

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

or procedures, but on an opinion, arbitrary decision an avéesired release date. This topic is

explained more fully in the section entitlBdoof of Incomplete Software Testingh page 15.

The only current alternative to this testing method (exfmepto testing at all), is to use the
software development life-cycle concept. This concegbierned by one of the nationally and
internationally recognized development standards to prelefatts from entering the software
during the design process, and to find and eliminate moeetdeds the software is coded, tested,

and released to the field.

This concept of software development using standardsresgextensive and meticulous
supporting data, and notations in source files, and a configuraanagement system. None of
this methodology is evident in the Alcotest code. Fuyttie decision method of how to allocate
the architecture and assignment of tasks does not matdf Hre/software standards. This
further substantiates that software development stdsdatre not used to verify or test the

software, including the ISO 9000 family of standards.

None of the segments of source code is marked “proprietaompany sensitive”,
“confidential”, etc. to alert employees as to inadeet exposure. Code that could not be
deemed proprietary (such as calculating the sum of a gifotgriables, a universal algorithm) is
not clearly separated from proprietary code. Code purdHes@ vendors or in the public

domain or open source is also not recognized.

Base One Technologies 13

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

The code consists mostly of general algorithms arrangadnanner to implement the breath

testing sequence. That is, the code is not really urugpeoprietary.

The premise that a development house has to treat squef@ietary is an obsolete idea.
Marking code as proprietary and hiding it from public view wdt prevent the development of
a similar competitive device. The code design is drbsethe devices it interacts with, and
datasheets and application notes for the hardwarel@galiribe how software interacts with it. A
proprietary designation for the software may be ahexdng to competitors, dissuading them

from competing with the device, but only for psychologressons.

The code is not arranged in a “core” section, “custsection, or any other additional division
or organization. It is possible that a thread segmegitnile considered a “core” or untouchable
segment, yet there is no indication where that segeither begins or ends, nor is anything
identifiable regarding “custom” sections. A new programwmerking for Drager would have no

idea which areas of code he/she could modify, and whashuntouchable.

Several sections that conceivably could be considemex] such as the interrupt handlers and
interrupt vector definitions, appear nonetheless to baea changed after the code came to the
United States. This is based on most of the code iodule containing German comments, and
German variables and identifiers, then abruptly the cochiagges to English for a short time,

and then returns to German.

Base One Technologies 14

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

At least three different programmers created the Ataeurce files, based on information in
the headers and differing coding styles. The readingeofode is difficult, crowded, and
“choppy”. It appears Drager did not enforce an intertaaldard to code the modules in a
uniform way. This means that programmers did not layolurt ¢bele in a uniform way. The
software will still execute as written, but it wikkbmore difficult to find defects, or find where

functions are located.

Most of the time, a “header” section identifies thedule, the programmer, and the date, but the
rest is free flowing, and several files are even mgsghe header. The three or more
programmers had distinct styles, but none of the siyleasily readable. Sections of the header

are empty, such as the last time the code was modiirebithe author of the change.

Approval by Other Standards

It is clear that, as submitted, the Alcotest softwaneld/ not pass development standards and
testing for the U.S. Government or Military. It wodddl software standards for the Federal
Aviation Administration (FAA) and Federal Drug Admination (FDA), as well as commercial

standards used in devices for public safety.

This means the Alcotest would not be considered fatarylapplications such as analyzing
breath alcohol for fighter pilots. If the FAA impaseandatory alcohol testing for all
commercial pilots, the Alcotest would be rejected bageon the FAA safety and software

standards.

Base One Technologies 15

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

These standards require the source code to be avadalaadit by the approving agencies. Even
in the competitive commercial aircraft world, softwaees not been copied by competitors and

has been protected by these agencies.

Proof of Incomplete Software Testing
The Alcotest software is a complicated software pnograith over 45,000 lines of code
(computer instructions), and over 3,200 of these linegamictions which make decisions,

meaning the software execution path will change one wayather based on these decist8ns

The calculation for traversing the decision paths es:@2002 = 10,240,000. If we postulate one
second to test one branch, then this test would take diagssto test just once. This
demonstrates that the exhaustive testing method is tdg aodterror prone. Therefore, the
software has not been thoroughly tested, if “testeeldms that all code has been executed or all

software paths have been examined.

The premise that the Alcotest software has beeadeblbroughly because failures have not
occurred over some arbitrary period purposely ignores gkeldepaths, because testing stopped

before all paths could be tested.

It should be mentioned here that programs developed urelerdilnstry standards mentioned
would still not be able to test all the paths. Howetlezse standards help identify and rank

critical paths in the software to test, enforce codtamdards that require tests like array bounds

'® Note: a figure of 57,000 lines of code or greater has been quoted as the number to use for the Alcotest, but this number
includes the source modules that are present in the directory but not used, and also includes the code for the communication
program on the PC, which does not run on the Alcotest.

Base One Technologies 16

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

checking, and eliminate defects introduced into the codbeébgidévelopment process. These

standards are currently the best available method.

Multiple Measurements
The ten-percent difference comparison of successit®itedone in units of ug/l, not %BAC.
There is a comment in that area of the code stating ¢onversion to %BAC needs to be done”,

but the conversion is not done.

Readings not Averaged Correctly

When the software takes a series of readingssitdwverages the first two readings. Then, it
averages the third reading with the average just computegh tha fourth reading is averaged
with the new average, and so on. There is no comarardte detailing a reason for this
calculation, which would cause the first reading to haeee weight than successive readings.

Nonetheless, the comments say that the values shewdderaged, and they are not.

Results Limited to Small, Discrete Values

The A/D converters measuring the IR readings and theélieleadings can produce values
between 0 and 4095. However, the software divides thedusahge(s) by 256, meaning the
final result can only have 16 values to representitieeviolt range (or less), or, represent the
range of alcohol readings possible. This is a loggexision in the data; of a possible twelve
bits of information, only four bits are used. Further, beeaof an attribute in the IR calculations,
the result value is further divided in half. This medrad bnly 8 values are possible for the IR

detection, and this is compared against the 16 values afeheell.

Base One Technologies 17

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Catastrophic Error Detection is Disabled

An interrupt that detects that the microprocessoriadrto execute an illegal instruction is
disabled, meaning that the Alcotest software could appeantcorrectly while executing wild
branches or invalid code for a period of time. Othegrinfpts ignored are the Computer

Operating Property (a watchdog timer), and the Softwaeerupt.

I mplemented Design Lacks Positive Feedback

The software controls electrical lines, which switievices on and off, such as an air pump,
infrared source, etc. The design does not provide a mimgitsensory line (loop back) for the
software to detect that the device state actually changkid. means that the software assumes

the change in state is always correct, but it caneofyvthe action.

Diagnostics Adjust/Substitute Data Readings

The diagnostic routines for the Analog to Digital PAConverters will substitute arbitrary,
favorable readings for the measured device if the measutasiout of range, either too high or
too low. The values will be forced to a high or lowitimespectively. This error condition is

suppressed unless it occurs frequently enough (see below).

Flow Measurements Adjusted/Substituted

The software takes an airflow measurement at poweangppresumes this value is the “zero

line” or baseline measurement for subsequent calculatidosguality check or reasonableness

Base One Technologies 18

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

test? is done on this measurement. Subsequent calculatiexsmpared against this baseline
measurement, and the difference is the change invairflbthe airflow is slower than the
baseline, this would result in a negative flow measuntnse the software simply adjusts the

negative reading to a positive value.

If the measurement of a later baseline is taken, lendieasurement is declared in error by the
software, the software simply uses the last “good” Ioeseand continues to read flow values

from a declared erroneous measurement device.

Range Limits Are Substituted for Incorrect Average Measurements

In a manner similar to the diagnostics, voltage valuesead and averaged into a value. If the
resulting average is a value out of range, the averadee igachanged to the low or high limit
value. If the value is out of range after averaging,gh@uld indicate a serious problem, such as

a failed A/D converter.

It is hard to imagine a calculated average occurringaeitsi the data input limits, since the data
inputs are being forced within limits. Claiming “This cahhappen”, means there should be no
test for the condition in the code. If it does happleer this substitution of values hides an

obvious design problem.

19 A type of test that determines if a value falls within a range considered normal or logical. It can be made on electronic signals
to detect extraneous noise as well as on data to determine possible input errors.

Base One Technologies 19

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Code Does Not Detect Data Variations

If the A/D Converter diagnostic is necessary bec#useeadings in fact jump out of range, then
it follows that other readings are within limits, bottd vary widely. This condition is not
checked, and calculations using these readings could bedatof(A test should be done to see

if the reading is reasonable.)

If this “does not happen”, then it follows that thegohiastic routines are not necessary because
the converters are always valid measurements. Pethap the diagnostics are used as a sales

feature to give false assurances to the customer.

Zero-Crossing Detection
The software uses data from one frequency cycle dRlievice at a time. It looks for a
positive-going change in the readings, that is, the galugst be negative, then zero or positive.

This is the timing point for the start of the 2 Hz cycle

The problem is the software takes a success-orientezlgath to the measurement. It does not
measure if there were false readings, and it does rok¢he elapsed time of the cycle to the
negative-going zero crossing, as well as the subsequent te zero on the positive path again.

The software presumes the wave form will always hbhegesame characteristics.

Further, the clock interrupt mechanism is not synchronmtdthe described wave form

characteristics. The clock interrupt is based on 8.192nud<$4 interrupts are supposed to

Base One Technologies 20

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

measure the 2 Hz cycle. But the actual timing of thesoreanent is 1.907 seconds, almost a

tenth of a second short to acquire the entire wava.for

Error Detection Logic

The software design detects measurement errors, buegtieese errors unless they occur a
consecutive total number of times. For example, endtiiflow measuring logic, if a flow
measurement is above the prescribed maximum valuesatléesl an error, but this error must
occur 32 consecutiviimes for the error to be handled and displayed. meians that the error
could occur 31 times, then appear within range once, themmBpeimes, etc., and never be
reported. The software uses different criteria valugs (@ instead of 32) for the measurements

of the various Alcotest components, but the erroratiete logic is the same as described.

Software Does not I nsulate/Protect Modules or Data
A way to prevent unforeseen defects is to code safegusastandard part of the coding
process. For instance, data required only by a single wireshould be declared in the

subroutine, so that other subroutines cannot inadvertdalyoe it.

The Alcotest software relies heavily on “global” @atriables, which means any of the
functions can inadvertently modify a data value not pathat routine’s process. If only the
bare essential data were declared global, and thicasstorage, this significantly reduces the

problem. Nevertheless, using any global data requires safisguar

Base One Technologies 21

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Code dealing with vectors and arrays and using pointerslexes need to check that the
calculated index or pointer really is within the artmyunds. Arguments passed to subroutines

should be analyzed for correctness. Likewise, valeesnmed from functions.

Timing Problems

The design of the code is to run in timed units of 8.194sedbnds, by means of an interrupt
signal to a handler, which then signals the main progmantral that it can continue to the next
segment. The interrupt goes off ev8r§92 ms, not 8.192 ms from my latest request for a time

delay.

The more often the code calls a single 8.192 ms intethgtnore inaccurate the software
timing can be, because the requests from the mainlibh@agefinstructions are out of phase with

the continuously operating timer interrupt routine.

Analogy: You have an “alarm clock” that has an hourdhaninute hand, and second hand, and
the hands move in a stepping motion from one tic tohemo This clock chimes every minute on
the minute (when the second hand reaches 12). If youtivarglock to time a minute and tell
you when the minute happens, and the second hand is airslsechen you submit the request,
then the alarm will go off 55 seconds later, whichlase enough. If instead, you request the
minute timing and the second hand is at 55 seconds, thefiymute timer” in that instance
would be only 5 seconds long. This means the analysis ofdirdine code dependent on the

interrupt timer operation will reveal that the actualimgs will vary widely, and be inconsistent.

Base One Technologies 22

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Common-sense practice is to write interrupt handlénsoé as small units of code that operate
quickly, and for a short period of time. The Alcotesternal interrupt routines are very lengthy
and are written in C instead of assembly language, whitincrease the execution time and
the memory used. There is a possibility that the mpetnandler can operate on an interrupt,
and take too long and miss the next one. In fact, ibexeest in the code to implement a “short
rti”, meaning return quicker from the interrupt, becauserthght be a problem in some
circumstances. The short path is achieved by disabligg zarts of the interrupt handler, which

implies that an error could occur getting the handlek bathe full function.

If this processor latches or saves missed time intexrafitthe interrupts will be processed, but
the processing time will be stretched, and processesikeneasurements could be affected. If
this processor does not latch interrupts then soméwvithissed, and the time measurements will
be shrunk, and device measurements will be affecteddingtr. This depends on how the
processor handles interrupts, and this specific infoomasi not in the datasheet for the

microprocessor, so that particular issue cannot be addi@secisely.

It has been claimed that the software checks devicesri@8 & second, but the timing of the

period is based on 8.192 ms, not 8 ms, and the softwaralgdhterrupts 122 times a second, a

5% difference between described and actual.

Other example timing sequences describe a 100 ms operatiactbally the timer value is 98.3

ms, approximately a 2% difference. (Further, in the eXampove describing out-of-phase

Base One Technologies 23

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

requests also happens, then the timer value could baaifiexr 8.192 ms, to a value of

approximately 90ms, which is 10% short.)

Uncalled Functionsin Source Code
Fifty-one functions (subroutines or programs) of 475 titattions are not used and are still in
the source code. This is 10.7% of the functions. Thesions are compiled and taking up

memory space in the device.

Code Disabled, not Deleted

Similar to the above, in this case functions or blodksode have been disabled by comment
markers, and the compiler does not produce instructiortbdadisabled code. However, because
the code is not removed, this indicates uncertainty ep#nt of the developers. Either the code
change is an experiment, which might have to be undworecapability is being temporarily
removed for a customer or version that might havgetoestored, or, this is the only way to

document a now unused process.

Data Records

The data records (breath test results) for tested s$slgex stored in random access memory
(RAM) in the unit, and presumably, this is non-volatileBNR meaning the data is retained in the
machine when power is turned off. The data storage scisesueh that a corruption by
incorrect storage or external factors such as staatrelity, etc. can result in the loss of all

retained data records.

Base One Technologies 24

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

The records are of unequal (varying) length, and the programuaees the location of the next
record by using information in the current record. A frgdrrupted record can cause the chain

to be broken and lost.

It is possible with special case software to recowestrof the data records, but that software

process is not included in the Alcotest software.

It is not mentioned anywhere in the user or traininguabthat the unit can be turned off and

not lose data.

Simultaneous Operations

The operation of the software is designed as “one-thiregtame” processing. Even the

interrupt or clocked operations delay the processing ahthia line of software execution. This
means that one device such as the fuel cell is measueensmlly, at a different time from the
infrared sensor or the flow or pressure sensor. Tipiemthat each test in the sequence has to
go according to plan, or the timing may be thrown off foeotlests. Certainly, it is important to

note that many of the measurements that could be taety simultaneously are not.

Allocation of Functionsto Source Filesis Unevenly Distributed

Seven source files contain 26.5% of the code, by linesdé¢. The rest is spread over 88 source
files. This implies that these seven are large modulitls a lot of code that is confusing to read
and difficult to maintain. Modern coding methodologypedlites one executable function to one

source file.

Base One Technologies 25

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Global Variable Declaration

The Alcotest source code indicates use of an oldenadetf declaring global variables ina C
source file for programs (called global.c), and thenguaimother header file (global.h) to make
the list of global variables available. This is a peabif the two files are not updated at the

same time, with the same characteristics.

A suggested method uses one source file, then uses aanattefine statement to actually

define memory space in one module, then outline the dpacéher subservient modules.

Defects In Three Out Of Five Lines Of Code

A universal tool in the open-source community, called,lwas used to analyze the source code
written in C. This program uncovers a range of problama minor to serious problems that
can halt or cripple the program operation. This Lint ppoghas been used for many years. It

uncovered that there are 3 error lines for every 5 i@®urce code in C.

RF Interference Measurement
While RF interference is not a New Jersey optioncthaing is a further representation of the
quality of the software. This should also be consdi@rBlew Jersey acquires this feature in the

future.

The code describes a test for measuring RF interferéaocerding to the comments and notes in

the source code, the test measures 10 readings, thages¢helO values. The program repeats

this procedure a total of 16 times, then uses the 16 avdmdetermine that RF is present.

Base One Technologies 26

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

In fact, the code takes 160 readings, using every tendingeand discarding the rest, instead of
averaging values ten at a time. This method does mgrate 160 data readings and is not a

valid measurement of RFI, according to the code desigimed in the comments.

The design criteria indicate that RF interferenaeniy declared if present for a quarter-second

or longer. If present for periods of less than a quageond, no RF interference is declared.

Source Matches Binary Image

Drager supplied a binary image that purports to be the e fos the Alcotest 7110 MK [l NJ
Version 3.11 software. While the binary image could natdsepared and verified to an actual
operating unit, the evidence supplied strongly indicategieatource code supplied ultimately
produces an image that matches the image supplied, arabltice sode has several mentions of
the New Jersey version. This exercise establishedhtaource code supplied had a very high

probability of being the NJ 3.11 version.

As further supporting data that neither internal (Drageeld@ed) nor external (ISO 9000, etc.)
development standards were followed, the compilatianliaking instructions supplied had fatal
errors; the instructions supplied were followed precidaly,would not compile. Also, the
procedures would not run on a Windows 98 machine, but did werikteally on a Windows 95

machine.

Base One Technologies 27

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

SECTION V SUMMARY / CONCLUSIONS
1. As a matter of public safety, the Alcotest should be sugzefrom use until the software
has been reviewed against an acceptable set of softwearlegiment standards, and
recoded and tested if necessary. An incorrect breatltould lead to accidents and
possible loss of life, because the device might not datpetson who is under the
influence, and that person would be allowed to drive. pdssibility also exists that a

person not under the influence could be wrongly accus#f@aconvicted.

2. The findings of this code review are self-evident. The @ashmot be tested exhaustively
and meticulously tested, because we run out of time.ofllfe¥ option is a review with a
development standard. Using a development standard wout ‘fleatprints” in the
code, source directories would be read-only and be gavésna configuration
management system, problem reports would be public knowledgi¢he@re would be
either an internal or external review board to reviea ®@commend changes. (For
instance, there is no evidence that version 3.11 camedfioaseline of version 3.10. It
could just as easily be based on version 3.8, missinggeldrom version 3.9 and 3.10.
This does not suggest that basing versions on an eaeon is a bad idea rather that

the documentation trail is incomplete.)

3. Since there is no ongoing development and review progtefects are probably “fixed”

more than once, as there was no documentation tovewid discover the problem

occurred and/or “fixed” in the past. Furthermore, therehigh likelihood that when

Base One Technologies 28

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

bug fixes are introduced to the software or when new featwmeeseing supplied to a

customer, new defects or bugs are also added.

4. There are no identifying notations or warnings thatisestof the code should be
considered proprietary and/or confidential. This meansvgpnegrammer would have no
idea these lines should be kept from competitors, and pogkibly disclose them. If a
military standard were applied to the Alcotest source dbeee would be strict
guidelines applied to mark confidential, secret and top ssections. In the commercial
arena, confidential code is still marked inside the ctmdprovide some protection in case

of court actions.

5. This machine has both a fuel cell and an IR detectoe niibroprocessor only processes
a finite number of different types of electrical sitgna There are digital inputs (0 or 5
volts), digital outputs (0 or 5 volts), interrupt signdlsof 5 volts) and the A/D
converters, which are continuous voltages from 0 or &.vdlhe input, output and
interrupt lines are common to all microprocessors;awets there. The IR sensor, flow
sensor, and the fuel cell output a value from O or 5 velid by the A/D. Not only is this
processing commonly understood, the A/D manufacturelrswuypply code snippets,

support, and electrical diagrams for all to use.

6. The computing foundation devices for the Alcotest, theapi@cessor, the A/D

converters, and the RS232 serial devices are technolggitablete, so we cannot

understand how code for an obsolete chip and A/D conwsteld be used by a

Base One Technologies 29

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

competitor to gain a development and economic advanifge were to contemplate
building a competing device, we would use none of this codestant from scratch.
When Drager needs to replace the A/D and or the praceblsre will be significant

hardware and software changes.

Base One Technologies 30

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

APPENDICES

Base One Technologies 31

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Appendix A: Standards & the Software Life-Cycle

Software Development vs. Electrical and Mechanical Design

With a mechanical design, either it works or it doeis riflectrical designs involve devices with
a finite number of connections and formulas, suchrtiwet of the problems can be eliminated at
the schematic phase. However, software’s appeladisatcomputer chip can now have
thousands or millions of ways to change the sequeneledtfical inputs and outputs to the chip,
because the memory of the computer chip can contailonsilbf individual instructions and

data.

Single Inputs Generate Single Outputs

However, let us pretend we did not have a computer, arldoked at a simple device to
implement.

Software

v

_ Inputs q

v

> Outputs

In this diagram, the box represents our theoreticlveoé, and the arrows represent three
separate inputs, that generate three separate and uniquis.o@puif the inputs were light
switches that were either on or off, then you would dvalve to test six switch positions, and
observe the outputs, and the testing is done.

Multiple Inputs and Outputs with Software
Multiple States

But in this example: —
Inputs

»
»

A 4
»
P
»
P

-

Outputs

\ 4

>

The requirements are more complicated. Note that sgpoés continue to become unique
outputs, but many of the inputs are tied to more tharootjgut. Therefore, if one of the inputs
were a temperature value, ranging from zero to one bdnthien there are at least a hundred
values that have to be tested to see what the outmugisoe. Further, if a test took ten

Base One Technologies 32

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

seconds, then testing the entire temperature range takad 000 seconds, or over sixteen
minutes—and you still have not tested the other inputs atpaditsu

The important point is: A complex computer program cabe thoroughly tested, because the
testing time for each additional input and output increagpenentially and there simply is not
enough time in the universe to complete the testingiefaycle of the software operation.

Standards and Testing

Faced with this scientific finding, software developerskied for methods to reduce systematic
defects in software development. A conclusion reacledthat requirements were not well
defined, and requirements that were available were not stoddrcompletely by software
engineers. Concentrating first on the requiremehés) the design, and then the methods and
processes evolved into a set of standards governing svbammonly called the Software Life-
Cycle. This is simply defining phases of a software @ogg existence from creation through
implementation, evolution, and finally phase-out or ddsence.

Historical Design and Coding Methods

The earliest software development was done by tridlearor, where coding was implemented,
and then changed when it did not work. The coding styledppears as though it were a
newspaper article written by a columnist and then obdmy 15 editors. It has a choppy sense
to it, and it is difficult to maintain, and pass alongiew programmers when the development
programmer leaves the firm. It is also charactdrlzgcoding a few source files with very many
lines of code, so the overview of the effort is lostha details in the module.

The next stage was “structured programming”, or the &town” method. This means you start
with the highest or most abstract level, and thenagaifunctions to the software as you see the
need as you bore down into the details. This was prowement in that requirements were
better understood, but the design process did not continue idto the lower levels, and the
programmers still programmed by trial and error.

Next was object-oriented programming. This method isdlikere for a more complete history.
Object-oriented design is a theoretical way to isolabgnams, code, and data from each other
so that fewer careless programming errors occur, ancbtheis more readable, maintainable,
and, in theory portable. This means a program used oki¢beest might be used on another
device without modification, and the theory continues tiasting would not be necessary. It has
not lived up to this promise (programmers are not using prsliaeveloped code, code
generated requires huge amounts of memory, and it runk/slo@bject-oriented code will

never be used on a breathalyzer-type device at curreespri

Existing Software Standardsin Industry and Government

Since complex software cannot be tested compldiglgefinition, standards have been
developed that have been proven to improve the softwasdogenent if they are strictly
followed. Several organizations have approved the usecodfyj medical, armament, and
diagnostic devices if these standards are followed, #nrgh it is understood that the software
cannot be fully tested.

Base One Technologies 33

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

It is a common fallacy that applying standards, using a leggirements discovery and design
phase, will make a software project late, and cost Mimeause people are sitting around
dreaming up designs, and no coding is started, which then dieéagtart of testing and
deployment.

Instead, it has been shown that employing these staraladd$evelopment methods actually
reduces the cost of a development project, becausereguigements are discovered earlier, and
then the coding matches more of the complete desigteaid of discovering through the middle
of a project that something was omitted, and now the déwsig to be revamped.

Therefore, an important reason to employ standarasresduce cost on a project, as well as
ensure adherence to design and requirements.

Here is a list of some widely used software developrsemtdards:

IEC 61508 Functional Safety International Standard
This is an internationally developed standard regardirejysaf electrical devices and software.

ISO 9001 (International Standard for Requirements)

While it sounds like this standard only applies to the Remérgs Phase, actually it applies to
the entire life-cycle (see below). The idea iglieck the coding phase, for instance, and verify
that the requirements are still met.

IEC 62304 (FDA, but also International)
Standards regarding software in medical devices likeimpuimps.

DO-178B (FAA & International)

Mostly used on avionics and other processor controlled eevsed on commercial aircraft, but
the standards are also used for devices for private faircra

DOD-STD-2167 & MIL-STD-498

Software standards used by the U.S. Military and als@ government law enforcement
agencies.

NHTSA, NTSB and OIML

These agencies have not caught up to the current leweglofdlogy, and do not recognize
software as a significant component. Instead, sof#ugagrouped with the overall device, like
the box cover or main power supplies. These agenciestd@we their own unique, developed,
software development standard. Further, there is no eegemt to use one of the known
standards listed above. There are standards foregtedyut no standards for software
development are listed or required, although a developaesf@urse volunteer a standard to
use for the development.

Base One Technologies 34

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Software Life-Cycle

No matter which of the above software standards isechdble standards revolve around the
“Software Life-Cycle”, which governs how software istmed, coded, tested, documented and
maintained. The following is a brief description of gi@ages common to the standards cited
above:

The segments here are a combination/hybrid of the Rdgce| (waterfall) and the Boehm
Model (spiral)

Requirements Analysis Phase

What does the software need to do? Do not pay atteotke coding needed, computer used,
etc. Focus only on what needs to be supplied or comput&daal abstract vein. List all inputs
and outputs from the software under design.

Design Phase

Research and decide the overall software approach fwab&m, and assign functions and
tasks to individual software modules (programs). As sabhfunction or sub-process is
required, the design methodology is applied to the snefiéfor subservient software units.

Coding Phase

At this point, code (write) the computer instructions. lysig methods and coding standards are
also applied, to ensure that the code written meetethgrements and the architecture of the
design phase.

Unit Testing Phase

This is testing of small pieces of the software. Whi tests are applied as the coding of the
module completes, according to the plan. Since mudtedgdftware is missing at this point,
temporary software and “stubs” are employed. It maybeqtossible to test all of the unit code
until more modules become available. There is muchlatmon software used at this phase.
Unforeseen errors arise, and this will require a rettuthe requirements and design phase.
Eventually the same unit under test returns to this pamt tests are repeated to see if the code
changes are effective.

Black-Box Testing Phase

At some point, nearly all of the planned software meslwill be considered ready as a
candidate for deployment. The software aggregate sd@ath simulated inputs at the
beginning of this phase, and eventually the aggregate wi#dted in the production device with
a simulated operational situation. Unforeseen errors apgedwe go back to Requirements,
Design, and Unit testing again.

Black-Box testing means that software is tested as thitggtode is not known by the tester.
The tests stimulate the software with inputs, sugbressing a keyboard key, and observing all
the results from that input change. The reasondte & hidden is that knowledge of the code
and its operation would unwittingly skew the designsheftests run to have a higher probability

Base One Technologies 35

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

of success, and would not as easily discover unforeséectsler defects from seemingly
impossible conditions.

Deployment

The unit goes out the door to the customer. Installatistnuctions, user manuals, and other
support items should be ready at this phase.

Defect Tracking and Configuration Management

Problems are discovered and reported from the custonerssars. You need to record the
defects and which software version they appear ine Bveloper should have also been
tracking errors in the earlier versions for interna,und to make sure that “fixed” errors do not
reappear. This is known as preventing a regression)error.

Defect Review and Implementation of Changes

Management, or a Change Review Board, in the casentd government agencies, review
outstanding defects and fixes, and authorize the produtiti@amew version. The process now
starts over at the Requirements phase and proceedsddraa there.

Base One Technologies 36

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Appendix B: Lint Program Analysis

Lint is a program designed to analyze software codé€ it looks for inconsistencies in the
coding, such as when a module passes a two-byte variadblgrégram expecting a one-byte
variable.

An error detected by lint does not prove that the progvdihmot execute, but it is a strong
indication that the code is not reviewed and standasiaairfollowed. This is the difference
between a defect and an error.

A counter argument to the analysis of lint is thatghegram is very fussy, and only discovers
minor problems. Using a real-world example to dematstihe value of a lint analysis: If a
Master Degree candidate’s final thesis was filed sbhahone or two words were misspelled,
then it would probably be overlooked and the informatiamaoed in the thesis would probably
be relevant and accepted. However, if a thesisad filith ten or more misspellings or
grammatical errors or faulty references per pégen the author/candidate would at least appear
careless, and the thesis would not be accepted by dhga&on committee without rigorous
improvements.There were 19,400 lint error messages on the ninety-five modulesng st
indication that even an internally developed standard by Drager personnelovéslowed,

and not much consideration was given to the possible defects in the code.

In order to better describe the defects found by thetmgram in the following sections, a brief
description of software design is necessary. Compusarsegisters and electronic subsections
to perform operations or instructions contained in tleenory area of the computer, and these
operations are further performed on memory locationsaiaing data and (hopefully) not
instructions. Examining a randomly chosen, consecubive liyte area of memory reveals a
random set of binary values. An examiner or tester winddit impossible to determine the
intended use of the memory area examined just by lookiting dtinary locations. The area
could be an integer variable, a floating-point numbeeg mumber in mathematical terms), a
series of four alphabetic characters, an array oflsralhle numbers, or an array of logical or
binary values (true or false, yes or no, on or offhhe Tomputer can treat the same data as
representations of very different data types. To redan&usion, the C language allows the
programmers to set aside sections of memory for a plntipurpose and for a particular type of
calculation or data representation. This is describetkearing variables belonging to a
standard family, or typeExamples of variable types are: integers (intyyatter, (char), and

real numbers (float, and double). It is considered $afdeclare all the variables needed for an
integer calculation in a formula as integer, and notintegers, characters, floats, etc. in the
same calculation. There are times where it is racgs0 convert one type of data to another,
but functions should be coded to do this, so that thateiaer of the code understands that types
are being converted. Formulas such as:

IntegerVariable = ‘ABC’ + 21 — 3.2;
should not be considered a normal way to do business,tBough the computer does not

consider this an erroneous statement, and will exetute i

Base One Technologies 37

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

A universal software design uses the concept of a “nm@mgram or function, which transfers
execution or calls a lower level program. This sub4fioncor subroutine then performs a non-
trivial operation, and returns the result for the maogpam. Data values are passed between
functions using argument variable$he purpose of these variables is to be the confluit o
information between software functions.

Again, if the receiving (“called”) subroutine expects type of variable, such as character data,
and if the sending routine sends an integer value, tigereteiver gets a value that is the wrong
number of bytes, and possibly is an invalid characterevalu

The following is a representative, partial list of tefects detected by the “lint” program, with a
brief description of the possible impact:

Mismatched Function Argument Types

As described above, this means that the argument valuesigass sub-function do not match
the declared arguments of the called function. Ther@lao cases where the function returns a
different type and value than the calling function expec

Some compilers automatically convert the mismatchpestybut this should not be considered a
solution. Compilers often make very general assump#bnosit conversions. Further, this is a
hidden operation by the compiler, so programmers returoiohdnge a software module would
wrongly assume that the arguments matched.

The preferred way of dealing with this is to code speoibierations to convert one data type to
another, or to rewrite the code to match the data types.

Local Functions Declared External

Functions or subroutines may be declared local ormadtéglobal). In the former, the function
is to be used by one or two routines, and all would biudtin the same source module.
Global functions are used by all the routines, implyirag the module came from the software
supplier as a utility routine or library function, thie developer codes a routine that is intended
for wide use in the program.

In this case, the function is intended to be locadlgdy but is declared an external type, such that
any other routine could call it, perhaps with unintendedlte.

Local Variables Declared Global (External)

This is similar to the previous problem. In this case,GHanguage provides a mechanism to
declare variables characterized as local or globaldpesc Many designs use globally declared
variables so that many routines can contribute todheesvariable. One problem with this is
that functions can make mistakes and address the wrongmné&oations, causing changes to
variables that were not intended.

Base One Technologies 38

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Specifically, this message means that a variable usedlpyoe routine has been declared as a
global, which means any routine may alter it. Hatl been declared local, then there is less of a
chance of unintended alteration.

Formula Results are Mismatched Type for Target Variable

The C language tries to internally convert values abttie greatest amount of information is
retained. When an integer value and a floating-pointb@ar are combined in a formula, for
example, then the C compiler uses the floating-pgpe,tbecause more info is retained. But if
the result is intended for storage in an integer, theanaersion is needed again, and precision
and accuracy may be lost in the conversion.

Formulas should take variable type into account, nothgsmathematical and logical aspects of
the formula.

Memory Leaks Detected

Some software design schemes take all of the unusedmnémtbe computer, and make it part
of a resource called dynamic storage. This allows progito manipulate strings or arrays of
data memory without needing to know the total size ofiteenory needed. A program then
asks, for example, 100 bytes of memory for a display agessAfter the message is not needed,
then the dynamic memory is “released” back into théesys

If a program does not release allocated memory, thartealy the computer loses track of the
available memory, and the system cannot perform opasatbecause all memory is “lost”. This
is called a memory leak in the jargon. Lint has detkthese memory leaks in the code.

Variables Assigned Different Types, Depending on Conditian

There are instances where variables are changed dependirtgcbrogical branch is followed.
For instance, an integer might be assigned an intedee on one path, and a character variable
on another branch (such as an if-then-else decisibim.type of the value assigned should be
consistent.

Arrays Initialized with Too Many Values

Consider a table with four rows and three columnshdftéble is designed to contain certain
values, then twelve values are required to fill the tablas lint message means that there are
more values supplied than locations available to filfrthi&e twelve or thirteen. It is not
possible to tell whether the extraneous values arersghand the size is wrong, or if values
were accidentally typed in.

Tables are often used to calculate complex formulahisevould affect the result. Also, it is

possible that the extra values overwrite other menmgtions and affect those calculations as
well.

Base One Technologies 39

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Comparisons are Different Types

This means that variables of one type, such as thgeini23, are compared against another
type, like Boolean, such as one or zero (true or fads®) the path of the program execution is
dependent on the result. This is like comparing apple®enges. The computer may decide
the answer is fruit, but that was not the right aersw

Functions Passed Arguments that are Not Used

This implies that a function was originally designedise a parameter or argument that is not
needed. The developers decided to leave the argumertsouhce code. This implies that the
developers could not find all instances of the functioncrahge them to the new list of
arguments, or felt the lack of change was benign.

The additional problem comes from a programmer newe@tbject that sees the unused
argument in the subroutine, and now there is confusWas the missing argument needed
somewhere else in the program? Can it be removed® tiNoprogrammer has to search all the
other source code to find a possibly missing variable.

Functions Called with Null or Missing Arguments

Similarly, there are functions that expect to recairgument variables, but the calling routine
does not supply them. Instead a “null” or “void” value isgeal, and the function tries to
complete the task with missing values. If a functioedseonly three arguments in one phase of
the program, but needs five variables in another phasetweefunctions should be coded so
that the argument lists match.

Table Index Variables could be Negative Values

Arrays are a straight-line collection of similar dat&rrays can be one-dimensional (a vector),
two-dimensional (a table), or have n-dimensions. Aelaynents are located by the code:
Array[row][column] for a table example. By definitipan array can have zero to n elements.
This lint message says that negative values are ussdlémting the element. This usually
results in a data fetch from an undefined memory locationtaining a random value.

Variables are Declared but not Used

This is another indication of unplanned, trial-and-epi@mgramming. During the development
process, an idea requiring a variable might have besreaed. However, the code associated
with the variable was never written or was discarded.

Table Bounds Checking

Since a calculation to access an element of a tabld cesult in an invalid value, there should
be code that checks the element index to ensure thatttulation lies within the table. The
code should take corrective action if this is detected.

Dynamic Memory not Initialized

A variable type called a pointer is used to hold the addres®emory location of any data type.
Pointers are usually used to hold the actual address ofalm®ry allocated, or to hold the

Base One Technologies 40

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

address of a data structure that contains multiplerdiftedata types, or they are used to hold the
address of an array element, because it is more readdabk C language to use pointers.

This lint message means that a pointer is used, bué# dat point to a valid memory address,
and/or the memory allocated could contain random valu@$ias not been set to a value
consistent with the data type being used. For instaheeacter strings should be initialized to
‘ (blanks) before use.

Dynamic Memory Bounds Checking

Just as the array calculations should check that theesd=tculated lie within the dimensions
of the array, a function should perform checks on dyoanemory.

If a function requests and gets twenty-five bytes of mgntben the code using that memory
should always check the address in the associated peamigble, to see if the pointer is within
the twenty-five bytes requested.

Functions Return Values That Are Ignored

If a function performs work, but is not supposed to retuvalue, then it should be declared as
returning a type “void”, or, no return argument. Alse talled function should not have a
“return” statement that passes back a value.

Comments are Nested within Comments

The point of this lint message is that there appears tbéstart of a comment block, and then
another start of a comment block appears without degettienend of a comment block. A
comment is an area of text in the source code teatdmpiler will ignore, and not translate into
instructions. Comments are used to leave design nofgsgnamming notes inside the source
code.

This probably does not indicate that the code has squioldems in this area. However, a
section of code might have been inadvertently comeakotit, which could have consequences.
At the least, it indicates lack of coding standards.

Variables are Assigned with Loss of Precision

Similar to an example quoted above, this message meaadsdlaedefinitdoss in precision and
accuracy when values are assigned to a variable, falipavformula in the code.

Numeric or Character Data is Treated as Logical/Boolean

Boolean or logical data is a data type that has onty @aed one as the legal value. The data is
often interpreted as “on or off” or “true or falsetce The point is that if a variable is Boolean, it
can only have two meaningful values. There are Boolelted formulas which employ
operators like “or”, “and”, and “not”.

This message means that a data type other than Boslaaad in a logical expression, for
example:
b = “true” or “123",
instead of

Base One Technologies 41

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

b = “true” and not “true”;

As expected, logical operations are used to make decisintighe first example value does not
make sense.

Dynamic Storage not Defined

This is a different problem regarding initialized storafjeagine a dynamic memory region,
which contains a data record for a test subject. iF$iefield in our example contains the name,
which is stored in another dynamic memory area. sBowend field holds the address, again in a
dynamic memory area, and so on through the rest afatserecord.

The problem comes when the initial memory allocat®omade. The compiler will allocate the
data record, but will not allocate the data areas ®figds unless the memory allocation
routine is specifically called.

Possible Use of Variable that is Not Initialized

This means a variable is declared, and initialized (suppgdedh reasonable value. However,
the compiler does not do this; it is the programmeasponsibility. This usually affects program
loops. Start at zero, do something five times, quitthisiexample, there is no guarantee the
counter starts at zero.

Functions Passed Undefined Dynamic Memory

This complicates the undefined dynamic memory problem aibede by passing the undefined
data to a called function, which further complicatespitudlem.

Infinite Loops

This means that a programmer coded a loop of instrudtionswhich there is no apparent
escape. Sometimes the escape mechanism is fromeanuttor invisible operation; this
mechanism should be noted in comments. There ar@tilsr ways to code this kind of logical
construct.

Incorrect Comparisons

Example: There are tests or comparisons like: isutigggned infan integer that is only zero or
a positive number, never negative) greater than or equard? This implies that the
programmer does not know the C language well, or he eeghaanhegative value but did not
know the compiler would convert to the unsigned int type.

Macro Errors

A Macro is a special set of codes operated on by th@iteEnspreprocessor. This means the
compiler looks over the code once, and does the inginsctiontained in the macros. These
instructions typically code things like the version numbeense, and conditional statements
like: do this only for this state.

Lint has detected that macros in the Alcotest codedvoadise a compiler error in modern
compilers. Apparently, the IAR compiler acceptsiitileere is an option that ignores this error.

Base One Technologies 42

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Possible Function Return Failure

There are functions that return without choosing the Vlaeis supposed to be returned. This
would possibly return undefined values, with unpredictable coneeggae

Multiple Definitions of the Same Function or Variable

It is possible to declare both a local and a globadigarof the same variable, or the same
function name. This causes confusion as to which var@lfienction is supposed to be referred
to.

Functions Return Values Different from Declared Type

This means that a subroutine returned a value such asactdr value, when the calling routine
expects an integer.

Source File Contains Invalid Characters

This means that there are characters, usually unpmentahlsome characters belonging to the
ASCII character set are not legal according to the dempparsing rules.

Overlapping Memory Areas used in Function or Formula

Consider a vector/array containing: A B C D E F Gwéfwrote instructions to copy the “A B

C D” into the locations starting at “D”, then unpretdble results can occur, because you would
copy A into where D is now, and then B into E, them© F, but when you get to where D was,
there is an A now. This is because the source locatmrerlap” the target locations. So the
final result would be AB C AB C A, instead of A B CBAC D.

Macros Used instead of “typedef”

Finally, this message says that a preprocessor statesnmesed to declare a special variable,
instead of a typedef statement, which is better suitduetpurpose. The difference is that the
former is not processed by the compiler, but therlgteThis means that the compiler will
detect the special type and generate conversions whezssagy.

Base One Technologies 43

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Appendix C: Lint Errors by Module
(Provided Under Separate Cover, Sealed Envelope)

Base One Technologies 44

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

APPENDIX D: GLOSSARY OF TERMS
GLOSSARY:

A/D (Analog to Digital) Converter: A device that processes a continuous signal (like AC
signals), and outputs a discrete value that approxinta¢esignal at the measurement point. The
A/D Converters used in this device convert from an inpugeaf zero to five volts to a value
ranging from zero to 4095. Each step value in the outpuber represents 0.00122 volts. In
addition to being limited to only 4095 values, the A/D camprotuce output values

continuously. It needs time to convert the valueser&lore, the device really samples data at a
regular period, instead of producing a continuous streamwésa

Assembler A computer program that translates a text docunmeotbinary instructions. The
text document is formatted to contain one computeruogon per line. This allows a
programmer to be very precise in programming a computethélanguage is error-prone by
nature.

Comment Software languages use what are called “reserved whirgisbcess into machine
language. Examples of reserved words are: “for”, “#lse”, and “while”. The compiler
assumes all input is either reserved words, or datablasi (in general). The compiler allows
special symbols that programmers use to tell the comfidmore this next section of input, |
just want to write a note to remind myself what is beingedioere.”

Compiler: A computer program that takes a text document (liketephd document) as input
and produces intermediate low-level (assembler) insbnsstwhich are then translated into
binary codes that the microprocessor can execute.

Function: (Also subroutine) This is an executable unit or compoaottite software. Execution
passes from the main line to (usually) many functions,at a time. Conventions and protocols
are used to “pass” values from the main program to th@stibes and back. Functions
commonly perform mathematical operations, and retwsultise but functions can also perform
logical or analytical functions, without returningesult.

Interrupt : An electrical signal that causes the microprame&ssave its current state, and jump
to execute a special routine to handle an urgent requesbcess, and then return to resume
normal execution. Often, programmers also refer tontieerupt handling routine as an
interrupt, also.

Linker: The compiler and assembler produce components thabcamunicate with each
other, but for technical reasons it is difficult to aga the components in memory and keep
track of each other. The Linker takes the comporenisput, and produces a file that is one
long representation of the program, which can be loadecamputer memory, EPROM’s, or
onto a disk. The Linker is the final production step, téwedoutput is executed on the computer.

Memory Banking: This concept is unique to embedded systems. In an IpelRE, the
processor can store a great deal of data, currentheigigabyte range. In a typical embedded

Base One Technologies 45

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

system, the processors can only process 65,536 locatvost. applications need more storage.
Banking is a process where a memory chip is used tlaagier than the processor’s range is
used to store data. This process acts like a “moving witydowl presents regions of data to the
processor one segment at a time. (Note: the procalssocontrols the bank selection, so
selecting the wrong bank will select the wrong data.)

Module: (Also called a source file). This is a human reagléitd, which is processed by a
compiler to produce executable code. A module maymistay more functions or subroutines.

Base One Technologies 46

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Appendix E — Curriculum Vitae
John Wisniewski

Mr. John Wisniewski, with a B.A. in Computer Sciencati SUNY in Potsdam, NY (1976) is
simultaneously a Software Engineer and an EPEQbgrammer. In addition to possessing a
solid background and impressive track record in EPROM codiagxpertise includes a
background in assembly, C++ coding, along with the alidityustomize existing software
applications on firmware

Mr. Wisniewski has over 30 years of experience as aanager and 15 years in product
development/entrepreneurial projects. He has beembadeled and assembly language
programmer for over 30 years now, and has planned, dedelape manufactured products
using firmware and EPROM's.

An individual programming in EPROM and familiar with firrave is rare however an individual
like Mr. Wisniewski, who has successfully developed produsitsy firmware and EPROM'’s is
almost non-existent. He is truly expert in his field.

The following represents a summary of his experience wit

Applications Testing and Troubleshooting
Systems Engineering Reverse Engineering
Software Engineering Product Development
Electronics Hardware Development Database Applications

SUMMARY of APPLICATIONS:

Spacecraft Measurements, Data Collection and Telemetry
Commercial Aircraft Condition Monitoring Flight Reatars
Defensive Avionic Systems — Jamming, Countermeasures
Military Communications and Intelligence Systems

Secure Network-Based Mission Planning Systems

Medical Instruments for Surgery — Ultrasound Technology
Wireless Communications Controllers and Tactical Rigp
Signal Processing Systems utilizing Fourier Transforms
Electro Mechanical Motion Control Loops and Systems
Interactive User Interfaces — Voice Recognition and @bnt
Internet-Based Monitoring and Control of Remote Machines
Client-Server Internet Transactions, Web Site Deplerytm
Fully Automated Telephone Systems — Custom Applications

%% An EPROM, or erasable programmable read-only memory, is a type of computer memory chip that retains its data when its
power supply is switched off. In other words, it is non-volatile.

Base One Technologies 47

Docket No. 58,879

Report: Alcotest 7110 Mk IlII C

SUMMARY of ACTIVITIES

Systems Engineering — Conceptual Design and Development
Software Engineering — Planning, Programming, Testing
Electronic Hardware Engineering — High Speed Logic, RF
Hardware / Software Integration, Testing and Documemtat
Reverse Engineering — Systems, Software and Hardware
Manufacturing Engineering — Process Control, Vendor laterf
Selection and Procurement of Materials, Parts andp8oants
Program and Project Management, Design Team Leadership
Configuration Management, Version Control, Documentatio
Product Approval and Certification: FCC, FAA, FDA, DoD

SYSTEMS ENGINEERING

Requirements Definition — Marketing Liaison
Conceptual Design — Project Engineering
Definition of Detailed Systems Specifications
Development of Systems Block Diagrams
Hardware / Software Interface Definitions
Preparation of System Software Specifications
Software Structure Charts & Data Flow Diagrams
Development of Comprehensive User Manuals
Adherence Monitoring to MIL-STD-2167A
Systems Design Incorporating MIL-STD-1759A
System Software Review for DO-178B Compliance
Preparation of System Software Certification Plans
Review and Analysis of Software Life Cycle Data
System Safety Assessments & Reliability Analyses
Hardware Range and Resolution Analysis

CPU Speed and Configuration Analysis

Analysis of Mass Data Storage Requirements
Capability Maturity Model (CMM) Assessment

SOFTWARE ENGINEERING

Real Time Executives — Embedded Controllers
Device Driver and Interrupt Handler Design
Handlers for Hard Disks, Modems and Tape Drives
Direct Memory Access (DMA) Processing
Programming of EPROMS, Flash Memories
Microprocessor Programming — Assembly, C, C+
Test and Diagnostic Software Development
Design of Graphical User Interfaces (GUI)

Base One Technologies

48

Docket No. 58,879

Report: Alcotest 7110 Mk IlII C

Data Acquisition and Control — Telemetry
Multiprocessor Configurations — Reliability
Optimization of Memory Structure for More Capacity
Multitasking and Interrupt Handlers for Special
Applications — such as Units Designed to
Run without an Operating System

ELECTRONIC HARDWARE DESIGN

Microprocessor Application Architectures
Digital Logic Design for Computer Interfaces
Sensor and Signal Conditioning Circuit Design
Analog Circuits for Receivers and Transmitters

REVERSE ENGINEERING (examples)

Disassembly of Operating System Codes for Driver Change
Reverse Engineering of Military Communication Systems
Regeneration of Missing Systems Documentation

Porting of Software Code from one Language to Another

TESTING and TROUBLESHOOTING (examples)

Usage of Electronic Test Equipment for Problem Tracking
Conceptual and Detail Design of Custom Test Equipment
Computer Configuration for Testing and Monitoring

PRODUCT DEVELOPMENT (examples)

Small Remote Controlled Electro-Mechanical Robots
Network-Based Remote Machine Monitoring and Control
Voice-Operated Remote Controls for Electronic Equipmen

DATABASE APPLICATIONS (examples):

Inventory Forecasting Systems for Reorder Planning
Automated Billing for Material and Services Provided
Identification Card Information Processing and Evaluation
Telephone System Time Charge Calculation and Allonati
Secure Access Control and Documentation Systems

Base One Technologies

49

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

HARDWARE and SOFTWARE USED

Microprocessors:

Mainframes:

Software Languages:

Development Tools:

Operating Systems:

Bus / Interfaces:

Laboratory Tools:

Databases:

Base One Technologies

Atmel Tiny12, etc., Dallas 80C320
Intel 80x86 Family, 8080 Family
Intel 8051 and Derivatives
Motorola 68360, 68xxx Family, 6805, 68HC11
Texas Instruments T19900, 6502
Zilog Z80 Family

Data General, VAX, IBM 360/370, Modcomp

Assembly for Processors Listed, PL/1,

FORTRAN, BASIC / Visual Basic, C, C++,

Java, Perl, HTML, Command Line Language
for Seve@glerating Systems

Microsoft Visual Studio, Micrasdfsual Basic,
Microsoft Visual C++, Microsoft Front Page,
BRIEF Editor, Watfor C+IDE, Netbeans IDE
for Java Development, Solaris Visual, Solaris
Configuration Management Tools, Microsoft
Source Safe, Beyond Compare Difference Tool,
C-DOC Documentation Generator, Perl Scripts
for Source Code Generation,

Flash Development Suites

MSDOS, VRTX, Macintosh pre-OSX
Windows 3.11/95/98/NT / 2000 / XP,
UNIX, Linux, Solaris, VAX, Modcomp,

ISA, RS232 / RS 485, GPIP, 1553 Bus,
PC Parallel Port, VME

Multimeters, Spectrum Analyzers,
Logic Analyzers, Oscilloscopes,
Protocol Analyzers, etc.

SQL Server, SQL Query Language,
Access, FoxPro, Paradox, NDBM

50

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

EMPLOYERS, CLIENTS, PAST AFFILIATIONS and PROFESSION AL
ORGANIZATIONS

AIL Division of Eaton Corporation, Deer Park, New York
AIL Division of Eaton Corporation, Edwards AFB, Califoa
Association for Computing Machinery, New York, New York
Cardkey Systems, Simi Valley, California

COMCO, Inc., Burbank, California

Coto Interpreting, Glendale, California

MDA Technologies, Camarillo, California

MDA Technologies, Woodbridge, Virginia

Medical Technical Products, Irvine, California

NASA / Jet Propulsion Laboratory, Barstow, California
NASA / Jet Propulsion Laboratory, Canberra, Australia
NASA / Jet Propulsion Laboratory, Pasadena, California
Northrop Grumman, Dumfries, Virginia

Northrop Grumman, Woodland Hills, California

Teledyne Controls, Copenhagen, Denmark

Teledyne Controls, West Los Angeles, California

US Marine Corps, Camp Pendleton, California

US Marine Corps, Point Mugu Naval Air Station, Califarni
Voice Control Products, Inc., Monterey, California

Voice Powered Technology, Canoga Park, California

Base One Technologies 51

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

John Wisniewski

Resume
Security Clearance: Education
Secret—Active B.A. Computer Science, SUNY Potsdam, MY 1976

General

Will take on challenging work others avoid. Winc Research has a broad base of experience, with a deep
understanding of the individual fields. Winc Research is always interested in new areas of study. Winc
Research is committed to thorough, detailed, exacting standards of project development.

Skill Set

Assembler/Binary/Firmware/Core Dumps C++ and C, Java, Basic, FORTRAN, PL-1

Training & Instruction SQL, SQL Server, Access and general DB

Technical Writing Sound processing and recording

Machine Tools (Mill, Lathe, Manufacturing) Military, Commercial, Sdentific and Entrepreneurial

Environments

Oscilloscope, emulator, logic analyzer, spectrum | Reverse Engineering of code and systems
analyzer, PROM programmers

Configuration management, problem tracking and | Electrical Assembly
problem resolution

Intel, Motorola, Phillips, Modcomp, Atmel processors

Client, Work and Project History

LaundriMate (Winc Research 1996-present) laundry monitoring produd receiving three US patents.
Winc Research did all of the hardware design, searched for suitable voices, recorded the phrases and word
fragments in three languages, and dewvelcped the sensor system for the appliances. Dewvelopment of this
device/product included obtaining FCC approval for Part 68 (Winc produces its own modems) and Part 15
residential emission standards. Winc Research is the only manufacturer, and over one thousand units have
been shipped and installed in the United States (over 30 states) and Canada since January 1998, Once
installed, no_units have ever been returned for repair. A major upgrade in 2005 allowed for Internet and e-
mail monitering of the machines, in combination with telephone voice prompts. For a demo, call 310-391-
7306, or on the Internet, http://www.laundryalert.com, then enter the password "stan9568".

Commander's Tactical Terminal (CTT) and Joint Tactical Terminal (JTT) (US Marine Corps and
Contractors 1998-present) are two related radio receivers that process military intelligence from satellite
broadcasts. The software controls and configures the receivers, and then processes the binary information
into text-readable messages on the fly. The software then forwards the data over an Ethernet network to
other computers for analysis. This software provides filtering of data, and multiple format conwversion
simultaneously.

MedScale (Winc Research 2002-present) is a medical monitoring device for Congestive Heart Failure
patients. The device is in the beta-test stage, with four prototypes completed. The device will report daily
patient weights as a first indicater of condition changes in congestive heart failure patients. Using
technelogy leveraged from LaundriMate, the device will input data into a remote server and provide analysis
tools for cardiologists. Winc Research is developing the server software, including the telephony receiving
the equipment, and developing the case, hardware and embedded software for the medical device.

Base One Technologies

52

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Infinity Cataract Surgery machine (Medical Technical Products 2000—present) is a device using
ultrasound to remove the lens of the eye for treatment for cataracts. Winc Research designed and
implemented the SVGA graphics elements (sprites) with TFT touch screen and mouse interface, operating in
a MS-DOS-like environment, as well as all of the functional and operational software for the device.

S§5-2 Surveillance system (US Marine Corps and California Microwave 2000-2002) is a small
portable embedded NT Server system for radio signal interception (intelligence surveillance work), based on
PC-104 boards. Winc Research provided software, electrical assembly and testing/verification services.

Advanced Mission Planning Software (US Marine Corps, Army Special Forces, California
Microwave 1998-2002) is a system to allow better mission planning and communication over an
Intranet, using either the Netscape or Internet Explorer browsers. While the system was primarily coded in
HTML, it needed Common Gateway Interface (CGI) modules coded in C++ and using ODBC database
interfaces, to maintain security. Winc Research designed, coded tested and delivered this portion of the
system, as well as tested the HTML scripting.

SCSM system (US Marine Corps, California Microwave 1998-2002) Reverse-engineered SIGINT
Common Sensor Module (SCSM) software from Digital Access Corporation, a collection of DCOM servers and
dients to perform signal intelligence communication and acquisition. After the reverse engineering phase,
Winc Research developed an interface module to perform communication between California Microwave's
Common Gateway System and the existing SCSM systems.

KCAL Television Membership Card system (KCAL-TV, 1996-2000) Designed and implemented a
turnkey database system for KCAL television, with automated telephone data entry. This database program
and supporting software supported 8 telephone lines and 1000 calls per day, and Winc Research processed
over 320,000 individual calls. Also designed, manufactured and implemented prize machines for the KCAL
Card program for use at promotional events. This system tracks membership attendance and awards prizes
for each promotion run. This program is Visual C++ MFC based and uses database, audio, and video
multimedia applications.

Interpreter Assignment System (Coto Interpreting, 1998-1999) is a TSAPI-compliant Computer
Telephony program to answer calls and track billing for an on-line language interpreter service. This
program answered calls from clients, looked up the client information in an Access database using the Caller
ID, and looked up and called appropriate interpreters for conferencing, then timed the calls for client billing.
The program was Windows-MFC and CDBC based, with database object support.

Print Buffer Computer (AlphaMerics, Inc. 1997) Designed and implemented 80x86 based C and C++
programs for PC-104 based systems for Alpha Merics, Inc., including an HPGL plotter and printer-buffering
program to support Alpha Merics' plotting tables. Winc Research alsc developed a calibration package to
measure the flatness and linearity of the plotting surface before system shipment.

S-300 Badge/Card system (CardKey, 1997) is a Z-80 based embedded access-control system to
implement security and attendance moenitoring for businesses, coded in C and assembler. The system
supported 30,000 badges (cards), and implemented remote menitoring through telephone lines. Designed
and implemented several components of system including report printing, remote access through modems,
RS232 monitoring, RS-485 protocols, and password enceding.

HUMS system (Teledyne Controls 1993-1996) is a VME-bus-based embedded system for the US Navy
CH-46 helicopter. This was a 68360 based processor to monitor performance of a neural network based
vibration and regime analysis system developed by the Navy, and also monitor performance of a Teledyne
Health and Usage Monitoring System (HUMS) Avionics system. This monitoring program was used to

Base One Technologies 53

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

evaluate these two systems in a fly-off type competition. The project was coded primarily in C and machine
language, including several IBM PC based R5-232 simulation routines for development testing.

Winc Research also had to code the embedded software for the TI-9900 8-bit processor for HUMS system
for Teledyne Controls, including data acquisition of sensor data, and recording data onto flight recorder
media. This system was coded entirely in machine/assembly language.

Micro-Sandblasting (COMCO, 1996) Designed and developed several robotic process-control systems
for COMCO, Inc., a maker of micro-abrasive systems. These systems are in use at Sandvik, a maker of
lathe and tools, and at Caterpillar's gasoline engine plant in Rockford, Ill. In addition to coding and testing,
Winc Research provided on-site troubleshooting and support at the Caterpillar plant.

VCR programmer; Business reminder (Voice Powered Technology, 1993) Implemented voice
recognition technology for Voice-Powered Technclogy, including a business reminder now on the market,
and a voice command based VCR controller, which has been discontinued.

Various Toys and Products (Voice Control Products 1994-1996) Implemented voice recognition
technology into several toys and consumer products for Voice Control Preducts Incorporated, of Monterey,
CA. Various 8-bit microprocessors were programmed, including 68xx and 8048. All coded at assembly or
machine language level.

Programmable DFDAU (Teledyne Controls 1990-1991) Developed custocmized routines for Digital
Flight Data Acquisition Unit (DFDAU), an avionics unit to record FAA required data to the flight crash
recorder. This unit records general data information to the additional data recorders used for airline
maintenance and analysis. Programs were coded in C, and developed under VAX VMS,

Designed and implemented a customer proegrammable version of the DFDAU software, which reduced the
amount of coding necessary to implement common changes for airline customers. Also designed and
developed a C++ Object Oriented ground system to modify the pregrammable software.

US Navy F-14 (Teledyne Controls 1990-1991) Worked on several military projects for Teledyne
Contrals, including the US Nawy F-14 monitoring system, which is based on the 1553 bus, VRTX, and coded
in 8080 assembly language and C, and display software for the USAF C-17 transport, written in 68000
assembly language and C.

SOCS (Telos Corp. 1989-1990) is orbital modeling and prediction software to support RCA data
communication satellites. This system, in FORTRAN, helped maintain geo-synchronous orbit position.
Knowledge of physics, orbital mechanics and time calculations including Julian dates, was essential for
software analysis and medification.

Radio Science Ground System (JPL, Telos Corp 1981-1990) Cognizant Design Engineer at the Jet
Propulsion Laboratory (JPL) for the Deep Space Network Radio Science data acquisition software during the
Woyager encounters at Uranus and Neptune. The computer-controlled subsystem was coded in HAL-S, a
MASA-unique block-criented programming language, and Mecdcomp assembly language. Design and
implementation supported Radio Science experiments at Venus and Mars during this period, including
support for USSR science experiments. Position included travel to Australia to train technicians and
troubleshoot before encounters.

Telemetry Ground System (JPL, Telos Corp 1981-1990) Worked on subsystem software for the DSN
for the Mark IV upgrade project. System coded in Assembly language.

Base One Technologies

54

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Monitor and Control System (JPL, Telos Corp 1981-1990) was the major architectural addition for
the DSN for the Mark IV upgrade project. Before this system was developed, operators had to manually
configure up to 12 computers for a single track of a probe such as Voyager. Played key roles in system
design, coding, test and qualification, and developing coding and documentation standards for development
group. Coded in HAL-S and Modcomp assembly language.

USAF B-1 bomber countermeasures system (AIL division of Eaton Corporation 1976-1981)
Designed, coded, tested, documented, and supported embedded system for AN/ALQ-161 defensive avionics
system for USAF B-1 bomber. This was a defensive radar jamming system for the aircraft, coded in
assembly language.

Designed, developed and supported a data acquisition system for the flight test program of the AN/ALQ-161
system to evaluate system performance, coded in FORTRAN.

Base One Technologies 55

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Appendix F
Base One Technologies
Credentials

Base One Technologies, founded in 1994, is a 13 year vetepaoviding a broad range of
information technology services including applicationieegring, systems engineering,
Independent Verification & Validation (IV&V) and consulj services. Over the past 13 years,
Base One consistently stands out due to our knowleggertese and our ability to locate and
secure top talent. We work on the critical systemssszgg to keep our customers on the cutting
edge of technologies and maintain connectivity. Basef@nehes leading edge technology
and services to the Financial/Banking Industry (Meksgihch and Citibank); and the
Telecommunications market space (MCIl/WorldCom (nowiader) and AT&T).

We currently consult with and provide services to the F@d&overnment for the Department of
Defense (DoD), US Army Corps of Engineers (USACE); Fald@ivilian agencies - Federal
Aviation Administration (FAA), the Department of Horaatl Security (DHS), and the Federal
Trade Commission (FTC).

We are a “right-sized” company with the bench strengtméet most client needs and the ability
to expand or contract staff to maintain strong busiaegsen and provide for an equitable
Return On Investment. When customers come to us tiey kve will provide the right person
for the tasking. If that person is not currently witBiase One’s employ, we recruit them. In
order to provide for unique skill sets, we maintain on-staéfam of technical recruiters who
routinely provide us with top level consultants for higéecific needs.

Our experience in the specific area of IV&V work includes

* Project Plan Review * Metrics Measurement and Assessment
* Requirements Analysis » Test Witnessing

* Requirements Tracing » Test Planning, Execution and Reporting
* Milestone Reviews » Training and Documentation Evaluation
» Architecture Design Analysis » Site Acceptance Testing

» Software Design Analysis » Defect Investigation

» Software Code Review * V&V Laboratory Support

* Metrics Development

Our specific work in the area of IV&V is synopsizeddyel

eCitibank SSA Electronic Benefits Transactions (EBT)

o Comprehensive Platform Evaluation

o Certification of Compliance with Security Requirentgen

o Compliance Assurance to Social Security Administrasiamdards
0 Integration and Component Level Testing

eDoD PenRen: Communication Command Survivability Project:

Base One Technologies 56

Docket No. 58,879
Report: Alcotest 7110 Mk IlII C

Evaluation of IT products and services to meet DOD stdsda

Ensure performance to design, cost, schedule and perfoerspecifications
Security Certification and Accreditation for IT sgsis

Projects assessments, process and performance audits

[N elelNe]

*MCI/WORLDCOM - Network Consolidation, Migration and Redesign
System Architecture, Software Design, Integratedifts Analysis
o0 Network Connection Compliance

o Life Cycle Management Analysis

0 Vulnerability Assessment

(@)

®DHS: Homeland Secure Data Network (HSDN)

o Conduct Security Test and Evaluation

IT Information Assurance conducting Certification areteditation (C & A)

Ensure policies, procedures, physical mechanisms areigis¢abdnd operating properly
Perform risk analysis on sites and systems, develg aitigation plan

Specifications include government regulations and guidande&SCAP, NIACAP

[N ele o]

eArmy Corp of Engineers: Operations Division Portal

o Established Verification and Validation plan

0 Authored Test Specification (with Agreed Requirements)

0o Executed Functional Tests

0 test plans and cases

0 test activities and processes

0 Test Logs, Incident Reports, Summary Reports
Corporate Clients

Merrill Lynch Citibank

Pfizer SBC

Salomon Smith Barney IBM

Harris Corporation MCI/WorldCom(now Verizon)

USWeb AT&T

JP Morgan Guardian

Prodigy SAIC

Sony Northrop Grumman

GE Quest Diagnostics

Government Clients
Department of Homeland Security
Department of Energy
US Army Corps of Engineers
Department of Defense: Pentagon
Department of Transportation: Federal Aviation Admiaison
Federal Trade Commission

Base One Technologies 57

